Ab initio study of the structure of, and double proton exchange in, 1,4-dihydroxy-2,3-diformylbuta-1,3-diene

Tatyana N. Gribanova, Ruslan M. Minyaev* and Vladimir I. Minkin

Institute of Physical and Organic Chemistry, Rostov State University, 344090 Rostov-on-Don, Russian Federation. Fax: +7 8632 28 5667; e-mail: minyaev@ipoc.rnd.runnet.ru

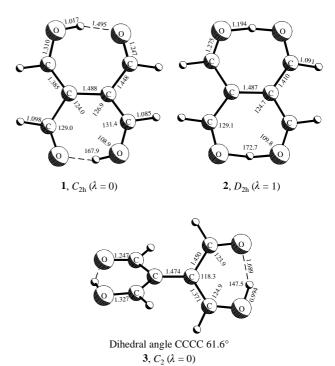
Concerted low-energy barrier (3.7 kcal mol⁻¹) double proton exchange in 1,4-dihydroxy-2,3-diformylbuta-1,3-diene has been predicted using *ab initio* [MP2(fc)/6-31G**] calculations.

Particular attention has been given to the study of the kinetics and mechanism of the intramolecular two proton migration in oxalic acid,¹ oxalamidine,² azophenine,³.⁴ 2,2'-bipyridyl-3,3'-diole⁵.⁶ and other similar compounds.ⁿ.Ց Both theoretical and experimental investigations¹-Ց showed that all the dyotropic rearrangements studied follow a two-step mechanism involving sequential proton transfer with inclusion of a zwitterionic intermediate. No unambiguous experimental or theoretical evidence for the realization of the concerted (one-step) double proton transfer within a molecule have hitherto been presented. In the present work we report on *ab initio* [MP2(fc)/6-31G**]¹9 calculations of a concerted low-energy barrier (3.7 kcal mol⁻¹) degenerate rearrangement of 1,4-dihydroxy-2,3-diformylbuta-1,3-diene 1 due to intramolecular double proton transfer.

According to the MP2(fc)/6-31G** calculations, a planar structure $\mathbf{1}$ ($\lambda=0$; hereafter λ designates the number of negative eigenvalues at a given stationary point) with C_{2h} -symmetry corresponds to the most stable form of the 1,4-dihydroxy-2,3-diformylbuta-1,3-diene. A possible cis-(Z)-conformer $\mathbf{3}$ is 2.6 kcal mol⁻¹ less favourable than $\mathbf{1}$. Unlike $\mathbf{1}$, the isomer $\mathbf{3}$ is acoplanar (C_2 -symmetry) with the dihedral C=C-C=C angle equal to 61.6° .

Calculated molecular structures, geometry and energy parameters of the structures 1–3 are given in Figure 1 and Table 1.

The symmetric structure 2 of D_{2h} -symmetry corresponds to a true saddle point ($\lambda = 1$) on the potential energy surface (PES) of C₆H₆O₄. A possible zwitterionic intermediate 4 that would result from single-proton transfer does not correspond to a stationary point. Optimizations starting from the zwitterionic configuration 4 with C_{2y} and C_1 symmetries lead to structures 2 and 1, respectively. Thus, there exists only the concerted proton exchange pathway 1a ≈ 2 ≈ 1b in 1,4-dihydroxy-2,3-diformylbuta-1,3-diene which implies occurrence of the multicentered transition state structure 2 with a very low energy of 3.7 kcal mol⁻¹ relative to 1. The three-centre hydrogen bridges in 2 are nearly linear (deviation from linearity is ca. 12°). The H···O=C angle of 112.6° lies within the limits of the optimal values for proton transfer along the hydrogen bond. 10 Accounting for zero-point energy corrections in 1 and 2 leads to the conclusion that the bicyclic structure 2 with hydrogen atoms centered in the middle of the O···O bridge


Table 1 Total energies ($E_{\rm tot}$ in hartree), relative energies (ΔE in kcal mol⁻¹), the number of negative hessian eigenvalues (λ), harmonic zero-point correction (ZPE in hartree), relative energy including harmonic zero-point correction ($\Delta E_{\rm ZPE}$ in kcal mol⁻¹), reaction enthalpy (ΔH in kcal mol⁻¹) and the smallest or imaginary vibration frequency ($\omega_1/{\rm i}\omega$ in cm⁻¹) for the structures **1–3** calculated by the MP2(fc)/6-31G** method.

Structure	E_{tot}	ΔE	λ	ZPE	ΔE_{ZPE}	ΔH	$(\omega_1/\mathrm{i}\omega)$
1, C _{2h}	-531.63149	0	0	0.11877	0	0	22.7
$2, D_{2h}$	-531.62561	3.68	1	0.11193	-0.60	-0.91	i1189.5
$3, C_2$	-531.62732	2.62	0	0.11813	2.21	2.47	46.1

possesses lower total energy as compared with 1. A similar phenomenon of the vibrational stabilisation of the structure with symmetrical hydrogen bridges has been discussed¹¹ recently with reference to experimental data for the IHI system.¹²

Thus, our calculations corroborate the assumption about the crucial influence of the stereochemical conditions on the proton transfer mechanism. Structure 1,4-dihydroxy-2,3-diformylbuta-1,3-diene appears to be the first example of a dyotropic molecule in which one-step low-barrier double proton exchange confirmed at the MP2-level is possible.

This work was supported by the Russian Foundation for Basic Research (grant nos. 98-03-33169a and 96-15-97476).

Figure 1 Geometry parameters of structures **1–3** calculated by the MP2(fc)/6-31G** method. Bond lengths and angles are given in angströms and degrees, respectively.

References

- C. W. Bock, J. Chem. Phys., 1986, 85, 5391.
- 2 G. Scherer and H.-H. Limbach, J. Am. Chem. Soc., 1994, 116, 1230.
- 3 M. K. Holloway, C. H. Reynolds and M. K. Merz, J. Am. Chem. Soc., 1989, 111, 3466.
- 4 H. Rumpel and H.-H. Limbach, J. Am. Chem. Soc., 1989, 111, 5429.
- 5 V. Barone and C. Adamo, Chem. Phys. Lett., 1995, 241, 1.
- 6 A. L. Sobolewski and L. Adamovicz, Chem. Phys. Lett., 1996, 252, 33.
- 7 V. I. Minkin, B. Ya. Simkin and R. M. Minyaev, Quantum Chemistry of Organic Compounds. Mechanisms of Reactions, Springer, Heidelberg, 1990, p. 270.
- V. I. Minkin, L. P. Olekhnovich and Yu. A. Zhdanov, Molecular Design of Tautomeric Compounds, D. Reidel, Doldrecht–Boston–Tokyo, 1988, p. 271.
- 9 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, *J. Comput. Chem.*, 1993, 14, 1347 (package of *ab initio* programs, 'GAMESS', Version 1996).
- 10 S. Scheiner, Acc. Chem. Res., 1994, 27, 402.
- 11 J. Manz, R. Meyer, E. Pollak and J. Römelt, *Chem. Phys. Lett.*, 1982, 93, 184.
- 12 J. Manz and J. Römelt, Chem. Phys. Lett., 1981, 81, 179.

Received: Moscow, 14th May 1998 Cambridge, 8th June 1998; Com. 8/03649G